425 research outputs found

    Platelet Redox Imbalance in Hypercholesterolemia: A Big Problem for a Small Cell

    Get PDF
    The imbalance between reactive oxygen species (ROS) synthesis and their scavenging by anti-oxidant defences is the common soil of many disorders, including hypercholesterolemia. Platelets, the smallest blood cells, are deeply involved in the pathophysiology of occlusive arterial thrombi associated with myocardial infarction and stroke. A great deal of evidence shows that both increased intraplatelet ROS synthesis and impaired ROS neutralization are implicated in the thrombotic process. Hypercholesterolemia is recognized as cause of atherosclerosis, cerebro- and cardiovascular disease, and, closely related to this, is the widespread acceptance that it strongly contributes to platelet hyperreactivity via direct oxidized LDL (oxLDL)-platelet membrane interaction via scavenger receptors such as CD36 and signaling pathways including Src family kinases (SFK), mitogen-activated protein kinases (MAPK), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In turn, activated platelets contribute to oxLDL generation, which ends up propagating platelet activation and thrombus formation through a mechanism mediated by oxidative stress. When evaluating the effect of lipid-lowering therapies on thrombogenesis, a large body of evidence shows that the effects of statins and proprotein convertase subtilisin/kexin type 9 inhibitors are not limited to the reduction of LDL-C but also to the down-regulation of platelet reactivity mainly by mechanisms sensitive to intracellular redox balance. In this review, we will focus on the role of oxidative stress-related mechanisms as a cause of platelet hyperreactivity and the pathophysiological link of the pleiotropism of lipid-lowering agents to the beneficial effects on platelet function

    Cell therapies in ovarian cancer.

    Get PDF
    Epithelial ovarian cancer (EOC) is the most important cause of gynecological cancer-related mortality. Despite improvements in medical therapies, particularly with the incorporation of drugs targeting homologous recombination deficiency, EOC survival rates remain low. Adoptive cell therapy (ACT) is a personalized form of immunotherapy in which autologous lymphocytes are expanded, manipulated ex vivo, and re-infused into patients to mediate cancer rejection. This highly promising novel approach with curative potential encompasses multiple strategies, including the adoptive transfer of tumor-infiltrating lymphocytes, natural killer cells, or engineered immune components such as chimeric antigen receptor (CAR) constructs and engineered T-cell receptors. Technical advances in genomics and immuno-engineering have made possible neoantigen-based ACT strategies, as well as CAR-T cells with increased cell persistence and intratumoral trafficking, which have the potential to broaden the opportunity for patients with EOC. Furthermore, dendritic cell-based immunotherapies have been tested in patients with EOC with modest but encouraging results, while the combination of DC-based vaccination as a priming modality for other cancer therapies has shown encouraging results. In this manuscript, we provide a clinically oriented historical overview of various forms of cell therapies for the treatment of EOC, with an emphasis on T-cell therapy

    A Tabu-search-based Algorithm for Distribution Network Restoration to Improve Reliability and Resiliency

    Get PDF
    Fault restoration techniques have always been crucial for distribution system operators (DSOs). In the last decade, it started to gain more and more importance due to the introduction of output-based regulations where DSO performances are evaluated according to frequency and duration of energy supply interruptions. The paper presents a tabu-search-based algorithm able to assist distribution network operational engineers in identifying solutions to restore the energy supply after permanent faults. According to the network property, two objective functions are considered to optimize either reliability or resiliency. The mathematical formulation includes the traditional feeders, number of switching operation limit, and radiality constraints. Thanks to the DSO of Milan, Unareti, the proposed algorithm has been tested on a real distribution network to investigate its effectiveness
    corecore